翻訳と辞書
Words near each other
・ Signature cocycle
・ Signature Creative
・ Signature crime
・ Signature defect
・ Signature dish
・ Signature Drinks
・ Signature file
・ Signature forgery
・ Signature Half-Step a Retrospective 2000-2014
・ Signature in the Cell
・ Signature island
・ Signature line of credit
・ Signature mark
・ Signature matrix
・ Signature move
Signature of a knot
・ Signature of Divine (Yahweh)
・ Signature operator
・ Signature Place
・ Signature program
・ Signature recognition
・ Signature Record Type Definition
・ Signature Records
・ Signature School
・ Signature Select
・ Signature song
・ Signature Sound
・ Signature Sounds Recordings
・ Signature tag
・ Signature Team


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Signature of a knot : ウィキペディア英語版
Signature of a knot
The signature of a knot is a topological invariant in knot theory. It may be computed from the Seifert surface.
Given a knot ''K'' in the 3-sphere, it has a Seifert surface ''S'' whose boundary is ''K''. The Seifert form of ''S'' is the pairing \phi : H_1(S) \times H_1(S) \to \mathbb Z given by taking the linking number lk(a^+,b^-) where a, b \in H_1(S) and a^+, b^- indicate the translates of ''a'' and ''b'' respectively in the positive and negative directions of the normal bundle to ''S''.
Given a basis b_1,...,b_ for H_1(S) (where ''g'' is the genus of the surface) the Seifert form can be represented as a ''2g''-by-''2g'' Seifert matrix ''V'', V_=\phi(b_i,b_j). The signature of the matrix V+V^\perp, thought of as a symmetric bilinear form, is the signature of the knot ''K''.
Slice knots are known to have zero signature.
==The Alexander module formulation==
Knot signatures can also be defined in terms of the Alexander module of the knot complement. Let X be the universal abelian cover of the knot complement. Consider the Alexander module to be the first homology group of the universal abelian cover of the knot complement: H_1(X;\mathbb Q). Given a \mathbb Q(Z )-module V, let \overline denote the \mathbb Q(Z )-module whose underlying \mathbb Q-module is V but where \mathbb Z acts by the inverse covering transformation. Blanchfield's formulation of Poincaré duality for X gives a canonical isomorphism H_1(X;\mathbb Q) \simeq \overline where H^2(X;\mathbb Q) denotes the 2nd cohomology group of X with compact supports and coefficients in \mathbb Q. The universal coefficient theorem for H^2(X;\mathbb Q) gives a canonical isomorphism with Ext_(H_1(X;\mathbb Q),\mathbb Q(Z )) (because the Alexander module is \mathbb Q(Z )-torsion). Moreover, just like in the quadratic form formulation of Poincaré duality, there is a canonical isomorphism of \mathbb Q(Z )-modules Ext_(H_1(X;\mathbb Q),\mathbb Q(Z )) \simeq Hom_(H_1(X;\mathbb Q), ), where . This isomorphism can be thought of as a sesquilinear duality pairing H_1(X;\mathbb Q) \times H_1(X;\mathbb Q) \to where . This form takes value in the rational polynomials whose denominators are the Alexander polynomial of the knot, which as a \mathbb Q(Z )-module is isomorphic to \mathbb Q(Z )/\Delta K. Let tr : \mathbb Q(Z )/\Delta K \to \mathbb Q be any linear function which is invariant under the involution t \longmapsto t^, then composing it with the sesquilinear duality pairing gives a symmetric bilinear form on H_1 (X;\mathbb Q) whose signature is an invariant of the knot.
All such signatures are concordance invariants, so all signatures of slice knots are zero. The sesquilinear duality pairing respects the prime-power decomposition of H_1 (X;\mathbb Q)—i.e.: the prime power decomposition gives an orthogonal decomposition of H_1 (X;\mathbb R). Cherry Kearton has shown how to compute the ''Milnor signature invariants'' from this pairing, which are equivalent to the ''Tristram-Levine invariant''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Signature of a knot」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.